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The Question
If we are given two or more, partially observed, noisy serial scans of
tumor, can we determine the full extend of tumor infiltration to healthy
tissue and its spatio-temporal evolution?

Contributions

•Novel analytical and multi level Hessian preconditioners
• Fast, matrix-free Hessian-based algorithms
•A new Massively parallel, open source FFT solver for CPU and GPU

(AccFFT library).

Problem Description
We seek to solve the following minimization problem:
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subjected to:
∂c

∂t
= ∇ · (k∇c) + ρc(1− c) in U with periodic B.Cs, (2)

c0 = Φp in Ω, (3)
where Ω is [0, 2π]3, U is Ω × (0, 1], c is the tumor concentration, O is the
observation operator, d is the data, β is the regularization parameter, Φp is
the tumor initial condition with Φ being a parametrization operator and p
the corresponding parameters. Also, ρ is the tumor proliferation rate. The
diffusion coefficient k is assumed to be inhomogeneous and anisotropic:

k = k0(x) + kfn(x)n(x)T , (4)
where k0(x) captures the inhomogeneity due to different diffusion rates
in white/gray matter, n(x) is the fiber structure directions derived from
Diffusion Tensor Imaging, and kf is a parameter adjusting the degree of
anisotropic diffusion.

Figure 1: Left: An axial slice of the inhomogeneity in the tumor diffusion coefficient.
Tumor cells diffuse faster in white matter areas compared to gray matter. Right: An
exemplary fiber structure of the brain derived from diffusion tensor imaging data.

Figure 2: Forward simulation of tumor growth for a 28 month period, using the
reaction-diffusion model of eq. (2).

Parallel Solver
The forward/adjoint equations are solved using Strang splitting, combined
with pseudo-spectral method. The domain is distributed in parallel using
slab or pencil decomposition as shown in Fig. 3.

Figure 3: Slab and pencil decomposition for parallel distribution of the domain.

128 256 512 1024 2048 4096 8192 16384
10−2

10−1

100

cores→

ti
m
e(
se
c)
→

PFFT
P3DFFT
AccFFT

160 320 640 1280

10−2

10−1

100

cores→

ti
m
e(
se
c)
→

PFFT
P3DFFT
AccFFT
AccFFT GPU

Figure 4: Strong scaling of AccFFT on Stampede (left, for N = 10243) and Maverick
(right, for N = 256× 512× 1024) systems at TACC [1]. Wall clock time is given for
a distributed 3D FFT for different GPU/core counts.

Hessian Formulation
The first order optimality conditions for eqs. (1) to (3) is as follows:
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The corresponding second order conditions lead to the Hessian equation
(see [2] for definitions):

N 0 JT ZT

0 Bp −ΦT 0
J −Φ 0 W T

Z 0 W 0


(c0,α0,p0,k0

f)


c̃

p̃

α̃

k̃f

 =


0
−gp

0
−gk


(c0,α0,p0,k0

f)

(6)

To solve this linear system, we use a reduced space formulation, by
eliminating c̃ and α̃ from the system. As a result we obtain:[
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Results
To test the algorithm, synthetic data is created with a known distribution and diffusion coefficient. Noisy,
partial observations of this data at two time points drive the inverse problem to reconstruct the inversion
parameters. A sample reconstruction is shown in Fig. 5.
We have developed novel Hessian preconditioners to reduce the computational cost of the Newton method.
These include two Analytical Preconditioners (AP), where we use approximate analytical solutions to the
Hessian. The other approach is to use a Coarse Grid Preconditioner, where the numerical inverse of the
Hessian is computed on a coarse grid. The performance of these preconditioners are shown in Tab. 1. The
effectiveness of these preconditioners has led us to alter the Inexact Newton method to a Hybrid one. There
we use the preconditioner instead of the numerical Hessian when the solution is far from the optimal point.
This can provide considerable speedup over the Inexact Newton method as shown Tab. 2, Fig. 6.

Figure 5: Target tumor distribution is shown in the top row, and the corresponding reconstructions in the bottom row.
The three columns show the tumor distribution at 0, 14, and 28 months, respectively. The blue contour indicates an
observable tumor concentration of cd = 0.2. The reconstruction relative errors are 6.6%, 4.5% and 5.3%, respectively [2].
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Figure 6: Convergence plot for Gradient Descent (GD), Hybrid Inexact Newton, and Inexact Newton method for ρ = 1, 2.
Considerable speedup is achieved with the hybrid method, as shown in Table 2. Right: Illustration of the coarsening used in
the Coarse Grid Preconditioner.

Table 1: The number of Hessian matvecs to solve the optimality condi-
tions for one iteration (tol=1e-3). AP : Analytical Preconditioner, CGPi
Coarse Grid Preconditioner (level i coarsening).

ρ No Prec AP0 AP1 CGP1 CGP2
1.0 7 3.00 3+0.05 3+0.25 3+0.02
2.0 8 5.00 3+0.05 5+0.63 6+0.10
4.0 9 10.00 3+0.06 12+0.06 12+0.24

Table 2: Total number of Hessian matvecs necessary to reach conver-
gence (i.e. ‖∂J∂p‖2 < 1e-3) is given for different values of ρ. Significant
speedup is achieved with the Hybrid Inexact Newton method.

Method ρ = 1.0 ρ = 2.0 ρ = 4.0
UnPrec. Inexact Newton 69 74 137
Prec. Inexact Newton 34.34 38.42 47.66
Hybrid Inexact Newton 28.06 28.01 42.6
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